3.6.8 \(\int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx\) [508]

3.6.8.1 Optimal result
3.6.8.2 Mathematica [C] (warning: unable to verify)
3.6.8.3 Rubi [A] (verified)
3.6.8.4 Maple [B] (verified)
3.6.8.5 Fricas [C] (verification not implemented)
3.6.8.6 Sympy [F(-1)]
3.6.8.7 Maxima [F(-1)]
3.6.8.8 Giac [F]
3.6.8.9 Mupad [F(-1)]

3.6.8.1 Optimal result

Integrand size = 33, antiderivative size = 197 \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=-\frac {(4 A-7 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {5 (A-2 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {5 (A-2 B) \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 A-7 B) \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}+\frac {(4 A-7 B) \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\cos (c+d x))}+\frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \]

output
-(4*A-7*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1 
/2*d*x+1/2*c),2^(1/2))/a^2/d-5/3*(A-2*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos( 
1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-5/3*(A-2*B)*sin 
(d*x+c)/a^2/d/cos(d*x+c)^(3/2)+1/3*(4*A-7*B)*sin(d*x+c)/a^2/d/cos(d*x+c)^( 
3/2)/(1+cos(d*x+c))+1/3*(A-B)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c 
))^2+(4*A-7*B)*sin(d*x+c)/a^2/d/cos(d*x+c)^(1/2)
 
3.6.8.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.76 (sec) , antiderivative size = 1154, normalized size of antiderivative = 5.86 \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx =\text {Too large to display} \]

input
Integrate[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^2) 
,x]
 
output
(10*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]*(A + B*Sec[c + d*x])*Sec 
[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + 
 Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Co 
t[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x]) 
^2) - (20*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5 
/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]*(A + B*Sec[c + d*x 
])*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sq 
rt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - Arc 
Tan[Cot[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + 
 d*x])^2) + (Cos[c/2 + (d*x)/2]^4*(A + B*Sec[c + d*x])*((-2*(-2*A + 4*B - 
2*A*Cos[c] + 3*B*Cos[c])*Csc[c/2]*Sec[c/2]*Sec[c])/d - (2*Sec[c/2]*Sec[c/2 
 + (d*x)/2]^3*(-(A*Sin[(d*x)/2]) + B*Sin[(d*x)/2]))/(3*d) - (4*Sec[c/2]*Se 
c[c/2 + (d*x)/2]*(-2*A*Sin[(d*x)/2] + 3*B*Sin[(d*x)/2]))/d + (8*B*Sec[c]*S 
ec[c + d*x]^2*Sin[d*x])/(3*d) + (8*Sec[c]*Sec[c + d*x]*(B*Sin[c] + 3*A*Sin 
[d*x] - 6*B*Sin[d*x]))/(3*d) - (2*(-A + B)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/ 
(3*d)))/(Sqrt[Cos[c + d*x]]*(B + A*Cos[c + d*x])*(a + a*Sec[c + d*x])^2) + 
 (4*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*Sec[c + d*x]*(A + B*Sec[c + d 
*x])*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2] 
*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]...
 
3.6.8.3 Rubi [A] (verified)

Time = 1.05 (sec) , antiderivative size = 195, normalized size of antiderivative = 0.99, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {3042, 3433, 3042, 3457, 27, 3042, 3457, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3433

\(\displaystyle \int \frac {A \cos (c+d x)+B}{\cos ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A \sin \left (c+d x+\frac {\pi }{2}\right )+B}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\int -\frac {3 a (A-3 B)-5 a (A-B) \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}+\frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}-\frac {\int \frac {3 a (A-3 B)-5 a (A-B) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{6 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}-\frac {\int \frac {3 a (A-3 B)-5 a (A-B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}-\frac {\frac {\int \frac {3 \left (5 a^2 (A-2 B)-a^2 (4 A-7 B) \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)}dx}{a^2}-\frac {2 (4 A-7 B) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}-\frac {\frac {3 \int \frac {5 a^2 (A-2 B)-a^2 (4 A-7 B) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx}{a^2}-\frac {2 (4 A-7 B) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}-\frac {\frac {3 \int \frac {5 a^2 (A-2 B)-a^2 (4 A-7 B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{a^2}-\frac {2 (4 A-7 B) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}-\frac {\frac {3 \left (5 a^2 (A-2 B) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx-a^2 (4 A-7 B) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx\right )}{a^2}-\frac {2 (4 A-7 B) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}-\frac {\frac {3 \left (5 a^2 (A-2 B) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx-a^2 (4 A-7 B) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )}{a^2}-\frac {2 (4 A-7 B) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}-\frac {\frac {3 \left (5 a^2 (A-2 B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (4 A-7 B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )}{a^2}-\frac {2 (4 A-7 B) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}-\frac {\frac {3 \left (5 a^2 (A-2 B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (4 A-7 B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )}{a^2}-\frac {2 (4 A-7 B) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}-\frac {\frac {3 \left (5 a^2 (A-2 B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (4 A-7 B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{a^2}-\frac {2 (4 A-7 B) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {(A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}-\frac {\frac {3 \left (5 a^2 (A-2 B) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (4 A-7 B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{a^2}-\frac {2 (4 A-7 B) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}\)

input
Int[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^2),x]
 
output
((A - B)*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^2) - ( 
(-2*(4*A - 7*B)*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*(1 + Cos[c + d*x])) + 
(3*(5*a^2*(A - 2*B)*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*Sin[c + d*x] 
)/(3*d*Cos[c + d*x]^(3/2))) - a^2*(4*A - 7*B)*((-2*EllipticE[(c + d*x)/2, 
2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]))))/a^2)/(6*a^2)
 

3.6.8.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3433
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(d + 
c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
3.6.8.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(722\) vs. \(2(233)=466\).

Time = 18.83 (sec) , antiderivative size = 723, normalized size of antiderivative = 3.67

method result size
default \(\text {Expression too large to display}\) \(723\)

input
int((A+B*sec(d*x+c))/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNV 
ERBOSE)
 
output
-1/2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a^2*(1/3*(- 
A+B)*(2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*E 
llipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2 
)))*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*(2*sin(1/2*d*x+1/2*c)^2-1)^( 
1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)-12*sin(1/2*d* 
x+1/2*c)^6+20*sin(1/2*d*x+1/2*c)^4-7*sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2 
*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1+sin(1/2*d*x+1 
/2*c)^2)+(-2*A+4*B)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-Ellipti 
cE(cos(1/2*d*x+1/2*c),2^(1/2)))-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2) 
+4*B*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2 
*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c) 
^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+(4*A-8*B)/sin(1/2*d*x+1/2 
*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2* 
c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1) 
^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.6.8.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 436, normalized size of antiderivative = 2.21 \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\frac {2 \, {\left (3 \, {\left (4 \, A - 7 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (19 \, A - 32 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A - 4 \, B\right )} \cos \left (d x + c\right ) + 2 \, B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, {\left (\sqrt {2} {\left (-i \, A + 2 i \, B\right )} \cos \left (d x + c\right )^{4} + 2 \, \sqrt {2} {\left (-i \, A + 2 i \, B\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (-i \, A + 2 i \, B\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, {\left (\sqrt {2} {\left (i \, A - 2 i \, B\right )} \cos \left (d x + c\right )^{4} + 2 \, \sqrt {2} {\left (i \, A - 2 i \, B\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (i \, A - 2 i \, B\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (4 i \, A - 7 i \, B\right )} \cos \left (d x + c\right )^{4} + 2 \, \sqrt {2} {\left (4 i \, A - 7 i \, B\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (4 i \, A - 7 i \, B\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-4 i \, A + 7 i \, B\right )} \cos \left (d x + c\right )^{4} + 2 \, \sqrt {2} {\left (-4 i \, A + 7 i \, B\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (-4 i \, A + 7 i \, B\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate((A+B*sec(d*x+c))/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^2,x, algorith 
m="fricas")
 
output
1/6*(2*(3*(4*A - 7*B)*cos(d*x + c)^3 + (19*A - 32*B)*cos(d*x + c)^2 + 2*(3 
*A - 4*B)*cos(d*x + c) + 2*B)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*(sqrt(2) 
*(-I*A + 2*I*B)*cos(d*x + c)^4 + 2*sqrt(2)*(-I*A + 2*I*B)*cos(d*x + c)^3 + 
 sqrt(2)*(-I*A + 2*I*B)*cos(d*x + c)^2)*weierstrassPInverse(-4, 0, cos(d*x 
 + c) + I*sin(d*x + c)) - 5*(sqrt(2)*(I*A - 2*I*B)*cos(d*x + c)^4 + 2*sqrt 
(2)*(I*A - 2*I*B)*cos(d*x + c)^3 + sqrt(2)*(I*A - 2*I*B)*cos(d*x + c)^2)*w 
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*(sqrt(2)*(4*I 
*A - 7*I*B)*cos(d*x + c)^4 + 2*sqrt(2)*(4*I*A - 7*I*B)*cos(d*x + c)^3 + sq 
rt(2)*(4*I*A - 7*I*B)*cos(d*x + c)^2)*weierstrassZeta(-4, 0, weierstrassPI 
nverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*(sqrt(2)*(-4*I*A + 7*I*B 
)*cos(d*x + c)^4 + 2*sqrt(2)*(-4*I*A + 7*I*B)*cos(d*x + c)^3 + sqrt(2)*(-4 
*I*A + 7*I*B)*cos(d*x + c)^2)*weierstrassZeta(-4, 0, weierstrassPInverse(- 
4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^4 + 2*a^2*d*cos 
(d*x + c)^3 + a^2*d*cos(d*x + c)^2)
 
3.6.8.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((A+B*sec(d*x+c))/cos(d*x+c)**(7/2)/(a+a*sec(d*x+c))**2,x)
 
output
Timed out
 
3.6.8.7 Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((A+B*sec(d*x+c))/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^2,x, algorith 
m="maxima")
 
output
Timed out
 
3.6.8.8 Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((A+B*sec(d*x+c))/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^2,x, algorith 
m="giac")
 
output
integrate((B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^2*cos(d*x + c)^(7/2)) 
, x)
 
3.6.8.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{7/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

input
int((A + B/cos(c + d*x))/(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^2),x)
 
output
int((A + B/cos(c + d*x))/(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^2), x)